
Telescoping Density-Ratio Estimation

Benjamin Rhodes
School of Informatics

University of Edinburgh
ben.rhodes@ed.ac.uk

Kai Xu
School of Informatics

University of Edinburgh
kai.xu@ed.ac.uk

Michael U. Gutmann
School of Informatics

University of Edinburgh
michael.gutmann@ed.ac.uk

Abstract

Density-ratio estimation via classification is a cornerstone of unsupervised learning.
It has provided the foundation for state-of-the-art methods in representation learning
and generative modelling, with the number of use-cases continuing to proliferate.
However, it suffers from a critical limitation: it fails to accurately estimate ratios
p/q for which the two densities differ significantly. Empirically, we find this
occurs whenever the KL divergence between p and q exceeds tens of nats. To
resolve this limitation, we introduce a new framework, telescoping density-ratio
estimation (TRE), that enables the estimation of ratios between highly dissimilar
densities in high-dimensional spaces. Our experiments demonstrate that TRE
can yield substantial improvements over existing single-ratio methods for mutual
information estimation, representation learning and energy-based modelling.

1 Introduction

Unsupervised learning via density-ratio estimation is a powerful paradigm in machine learning [67]
that continues to be a source of major progress in the field. It consists of estimating the ratio p/q
from their samples without separately estimating the numerator and denominator. A common way
to achieve this is to train a neural network classifier to distinguish between the two sets of samples,
since for many loss functions the ratio p/q can be extracted from the optimal classifier [67, 21, 45].
This discriminative approach has been leveraged in diverse areas such as covariate shift adaptation
[66, 70], energy-based modelling [22, 4, 60, 71, 38, 19], generative adversarial networks [15, 53, 48],
bias correction for generative models [20, 18], likelihood-free inference [57, 69, 8, 13], mutual-
information estimation [2], representation learning [30, 31, 54, 25, 27], Bayesian experimental design
[34, 35] and off-policy reward estimation in reinforcement learning [41]. Across this diverse set of
applications, density-ratio based methods have consistently yielded state-of-the-art results.

Despite the successes of discriminative density-ratio estimation, many existing loss functions share
a severe limitation. Whenever the ‘gap’ between p and q is large, the classifier can obtain almost
perfect accuracy with a relatively poor estimate of the density ratio. We refer to this failure mode
as the density-chasm problem—see Figure 1a for an illustration. We observe empirically that the
density-chasm problem manifests whenever the KL-divergence DKL(p ‖ q) exceeds ∼ 20 nats1.
This observation accords with recent findings in the mutual information literature regarding the
limitations of density-ratio based estimators of the KL [44, 59, 64]. In high dimensions, it can easily
occur that two densities p and q will have a KL-divergence measuring in the hundreds of nats, and so
the ratio may be virtually intractable to estimate with existing techniques.

In this paper, we propose a new framework for estimating density-ratios that can overcome the
density-chasm problem. Our solution uses a ‘divide-and-conquer’ strategy composed of two steps.
The first step is to gradually transport samples from p to samples from q, creating a chain of
intermediate datasets. We then estimate the density-ratio between consecutive datasets along this

1‘nat’ being a unit of information measured using the natural logarithm (base e)
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(a) Density-ratio estimation between an extremely peaked Gaussian p (σ = 10−6) and a broad Gaussian q
(σ = 1) using a single-parameter quadratic classifier. Left: A log-log scale plot of the densities and their ratio.
Right: the solid blue line is the finite-sample logistic loss (Eq. 2) for 10,000 samples. Despite the large sample
size, the minimiser (dotted blue line) is far from optimal (dotted black line). The dotted red line is the newly
introduced TRE solution, which almost perfectly overlaps with the dotted black line.
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(b) Telescoping density-ratio estimation applied to the problem in (a), using the same 10,000 samples from p and
q. Top row: a collection of ratios, where p1, p2 and p3 are constructed by deterministically interpolating between
samples from p and q. Bottom row: the logistic loss function for each ratio estimation problem. Observe that
the finite-sample minimisers of each objective (red dotted lines) are either close to or exactly overlapping their
optima (black dotted lines). After estimating each ratio, we then combine them by taking their product.

Figure 1: Illustration of standard density-ratio estimation vs. telescoping density-ratio estimation.

chain, as illustrated in the top row of Figure 1b. Unlike the original ratio p/q, these ‘chained ratios’
can be accurately estimated via classification (see bottom row). Finally, we combine the chained
ratios via a telescoping product to obtain an estimate of the original density-ratio p/q. Thus, we refer
to the method as Telescoping density-Ratio Estimation (TRE).

We empirically demonstrate that TRE can accurately estimate density-ratios using deep neural
networks on high-dimensional problems, significantly outperforming existing single-ratio methods.
We show this for two important applications: representation learning via mutual information (MI)
estimation and the learning of energy-based models (EBMs).

In the context of mutual information estimation, we show that TRE can accurately estimate large
MI values of 30+ nats, which is recognised to be an outstanding problem in the literature [59].
However, obtaining accurate MI estimates is often not our sole objective; we also care about
learning representations from e.g. audio or image data that are useful for downstream tasks such as
classification or clustering. To this end, our experimental results for representation learning confirm
that TRE offers substantial gains over a range of existing single-ratio baselines.

In the context of energy-based modelling, we show that TRE can be viewed as an extension of noise-
contrastive estimation [22] that more efficiently scales to high-dimensional data. Whilst energy-based
modelling has been a topic of interest in the machine learning community for some time [63], there
has been a recent surge of interest, with a wave of new methods for learning deep EBMs in high
dimensions [10, 6, 65, 40, 17, 76]. These methods have shown promising results for image and 3D
shape synthesis [74], hybrid modelling [16], and modelling of exchangeable data [75].
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However, many of these methods result in expensive/challenging optimisation problems, since they
rely on approximate Markov chain Monte Carlo (MCMC) sampling during learning [10, 16, 76], or
on adversarial optimisation [6, 17, 76]. In contrast, TRE requires no MCMC during learning and uses
a well-defined, non-adversarial, objective function. Moreover, as we show in our mutual information
experiments, TRE is applicable to discrete data, whereas all other recent EBM methods only work
for continuous random variables. Applicability to discrete data makes TRE especially promising for
domains such as natural language processing, where noise-contrastive estimation has been widely
used [46, 36, 1].

2 Discriminative ratio estimation and the density-chasm problem

Suppose p and q are two densities for which we have samples, and that q(x) > 0 whenever
p(x) > 0. We can estimate the density-ratio r(x) = p(x)/q(x) by training a classifier to distinguish
samples from p and q [23, 67, 22]. There are many choices for the loss function of the classifier
[67, 58, 21, 45, 59], but in this paper we concentrate on the widely used logistic loss

L(θ) = −Ex1∼p log

(
r(x1;θ)

1 + r(x1;θ)

)
− Ex2∼q log

(
1

1 + r(x2;θ)

)
, (1)

where r(x;θ) is a non-negative ratio estimating model. To enforce non-negativity, r is typically
expressed as the exponential of an unconstrained function such as a neural network. For a correctly
specified model, the minimiser of this loss, θ∗, satisfies r(x;θ∗) = p(x)/q(x), without needing any
normalisation constraints [22]. Other classification losses do not always have this self-normalising
property, but only yield a estimate proportional to the true ratio—see e.g. [59].

The density-chasm problem
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Figure 2: Sample efficiency
curves for the experiment in
Figure 1. Single ratio estima-
tion can be extremely sample-
inefficient.

We experimentally find that density-ratio estimation via classification
typically works well when p and q are ‘close’ e.g. the KL divergence
between them is less than ∼ 20 nats. However, for sufficiently large
gaps, which we refer to as density-chasms, the ratio estimator is
often severely inaccurate. This raises the obvious question: what is
the cause of such inaccuracy?

There are many possible sources of error: the use of misspecified
models, imperfect optimisation algorithms, and inaccuracy stem-
ming from Monte Carlo approximations of the expectations in (1).
We argue that this mundane final point—Monte Carlo error due to
finite sample size—is actually sufficient for inducing the density-
chasm problem. Figure 1a depicts a toy problem for which the
model is well-specified, and because it is 1-dimensional (w.r.t. θ),
optimisation is straightforward using grid-search. And yet, if we use
a sample size of n = 10, 000 and minimise the finite-sample loss

Ln(θ) =

n∑
i=1

− log

(
r(xi1; θ)

1 + r(xi1; θ)

)
− log

(
1

1 + r(xi2; θ)

)
, xi1 ∼ p, xi2 ∼ q, (2)

we obtain an estimate θ̂ that is far from the asymptotic minimiser θ∗ = arg min L(θ). Repeating
this same experiment for different sample sizes, we can empirically measure the method’s sample
efficiency, which is plotted as the blue curve in Figure 2. For the regime plotted, we see that an
exponential increase in sample size only yields a linear decrease in estimation error. This empirical
result is concordant with theoretical findings that density-ratio based lower bounds on KL divergences
are only tight for sample sizes exponential in the the number of nats [44].

Whilst we focus on the logistic loss, we believe the density chasm problem is a broader phenomenon.
As shown in the appendix, the issues identified in Figure 1 and the sample inefficiency seen in Figure
2 also occur for other commonly used discriminative loss functions.

Thus, when faced with the density-chasm problem, simply increasing the sample size is a highly
inefficient solution and not always possible in practice. This begs the question: is there a more
intelligent way of using a fixed set of samples from p and q to estimate the ratio?

3



3 Telescoping density-ratio estimation

We introduce a new framework for estimating density-ratios p/q that can overcome the density-
chasm problem in a sample-efficient manner. Intuitively, the density-chasm problem arises whenever
classifying between p and q is ‘too easy’. This suggests that it may be fruitful to decompose the task
into a collection of harder sub-tasks.

For convenience, we make the notational switch p ≡ p0, q ≡ pm (which we will keep going
forward), and expand the ratio via a telescoping product

p0(x)

pm(x)
=
p0(x)

p1(x)

p1(x)

p2(x)
. . .

pm−2(x)

pm−1(x)

pm−1(x)

pm(x)
, (3)

where, ideally, each pk is chosen such that a classifier cannot easily distinguish it from its two
neighbouring densities. Instead of attempting to build one large ‘bridge’ (i.e. density-ratio) across the
density-chasm, we propose to build many small bridges between intermediate ‘waymark’ distributions.
The two key components of the method are therefore:

1. Waymark creation. We require a method for gradually transporting samples {x1
0, . . . ,x

n
0}

from p0 to samples {x1
m, . . . ,x

n
m} from pm. At each step in the transportation, we obtain a

new dataset {x1
k, . . . ,x

n
k} where k ∈ {0, . . .m}. Each intermediate dataset can be thought

of as samples from an implicit distribution pk, which we refer to as a waymark distribution.
2. Bridge-building: A method for learning a set of parametrised density-ratios between

consecutive pairs of waymarks rk(x;θk) ≈ pk(x)/pk+1(x) for k = 0, . . . ,m− 1, where
each bridge rk is a non-negative function. We refer to these ratio estimating models as
bridges. Note that the parameters of the bridges, {θk}m−1

k=0 , can be totally independent or
they can be partially shared.

An estimate of the original ratio is then given by the product of the bridges

r(x;θ) =

m−1∏
k=0

rk(x;θk) ≈
m−1∏
k=0

pk(x)

pk+1(x)
=

p0(x)

pm(x)
, (4)

where θ is the concatenation of all θk vectors. Because of the telescoping product in (4), we refer to
the method as Telescoping density-Ratio Estimation (TRE).

3.1 Waymark creation

In this paper, we consider two simple, deterministic waymark creation mechanisms: linear com-
binations and dimension-wise mixing. We find these mechanisms yield good performance and are
computationally cheap. However, we note that other mechanisms are possible, and are a promising
topic for future work.

Linear combinations. Given a random pair x0 ∼ p0 and xm ∼ pm, define the kth waymark via

xk =
√
1− α2

k x0 + αkxm, k = 0, . . . ,m (5)

where the αk form an increasing sequence from 0 to 1, which control the distance of xk from x0. For
our applications, each dimension of p0 and pm has the same variance2 and the coefficients in (5) are
chosen to preserve this variance, with the goal being to match basic properties of the waymarks and
thereby make consecutive classification problems harder.

Dimension-wise mixing. An alternative way to ‘mix’ two vectors is to concatenate different subsets
of their dimensions. Given a d-length vector x, we can partition it into m sub-vectors of length d/m,
assuming d is divisible by m. We denote this as x = (x[1], . . . ,x[m]), where each x[i] has length
d/m. Using this notation, define the kth waymark via

xk = (xm[1], . . . , xm[k], x0[k + 1], . . . , x0[m]) k = 0, . . . ,m (6)

where, again, x0 ∼ p0 and xm ∼ pm are randomly paired.

2For MI estimation this always holds, for energy-based modelling this is enforceable via the choice of pm.
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Number and spacing. Given these two waymark generation mechanisms, we still need to decide the
number of waymarks, m, and, in the case of linear combinations, how the αk are spaced in the unit
interval. We treat these quantities as hyperparameters, and demonstrate in the experiments (Section
4) that tuning them is feasible with a limited search budget.

3.2 Bridge-building

Each bridge rk(x;θk) in (4) can be learned via binary classification using a logistic loss function as
described in Section 2. Solving this collection of classification tasks is therefore a multi-task learning
(MTL) problem—see [62] for a review. Two key questions in MTL are how to share parameters and
how to define a joint objective function.

Parameter sharing. We break the construction of the bridges rk(x;θk) into two stages: a (mostly)
shared body computing hidden vectors fk(x)3, followed by bridge-specific heads. The body fk is a
deep neural network with shared parameters and pre-activation per-hidden-unit scales and biases for
each bridge (see appendix for details). Similar parameter sharing schemes have been successfully
used in the multi-task learning literature [7, 11]. The heads map the hidden vectors fk(x) to the
scalar log rk(x;θk). We use either linear or quadratic mappings depending on the application; the
precise parameterisation is stated in each experiment section.

TRE loss function. The TRE loss function is given by the average of the m logistic losses

LTRE(θ) =
1

m

m−1∑
k=0

Lk(θk), (7)

Lk(θk) = −Exk∼pk
log
( rk(xk;θk)

1 + rk(xk;θk)

)
− Exk+1∼pk+1

log
( 1

1 + rk(xk+1;θk)

)
. (8)

This simple unweighted average works well empirically. More sophisticated multi-task weighting
schemes exist [5], but preliminary experiments suggested they were not worth the extra complexity.

During optimisation, we approximate the expectations in (8) with mini-batch averages, which also
results in an unbiased gradient estimate for θ. We first draw B samples each from p0 and pm, and
then randomly pair members from each set. For each pair, we construct trajectories using either
equation (5) or (6). The fact that we use trajectories, where any two points along a given trajectory
will be correlated (except possibly the first & last), means that the gradient of (7) w.r.t. θ is estimated
using shared sources of randomness. Coupling sources of randomness in this way can act as a form
of variance reduction [49], and we do indeed find that it enhances learning considerably.

3.3 TRE applied to mutual information estimation

The mutual information (MI) between two random variables u and v can be written as

I(u,v) = Ep(u,v)

[
log r(u,v)

]
, r(u,v) =

p(u,v)

p(u)p(v)
. (9)

Given samples from the joint density p(u,v), one obtains samples from the product-of-marginals
p(u)p(v) by shuffling the v vectors across the dataset. This then enables standard density-ratio
estimation to be performed.

For TRE, we require waymark samples. To generate these, we take a sample from the joint, x0 =
(u,v0), and a sample from the product-of-marginals, xm = (u,vm), where u is held fixed and
only v is altered. We then apply a waymark construction mechanism from Section 3.1 to generate
xk = (u,vk), for k = 0, . . . ,m.

3.4 TRE applied to energy-based modelling

Discriminative density-ratio estimation can be used to learn energy-based models (EBM). All we
require is that the denominator density q has an analytically tractable expression, and then φ(x;θ) :=
r(x;θ)q(x) is automatically a model of p. This model is typically unnormalised—or energy-based—
because φ(x;θ) is not constrained to integrate to 1 for all values of θ.

3For simplicity, we suppress the parameters of fk, and will do the same for rk in the experiments section.
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If we choose to estimate the ratio r via classification with a single logistic loss, then this corresponds to
noise-contrastive estimation (NCE) [22], which has many appealing theoretical properties [22, 61, 72].
However, to avoid the density-chasm problem, we can estimate r with TRE instead. The resulting
EBM will be a product-of-experts model [26] defined as the product of q (i.e. pm) with the telescoping
product in (4). Following [22], we refer to q as the noise distribution.

4 Experiments

We include two toy examples illustrating both the correctness of TRE and the fact that it can solve
problems which verge on the intractable for standard density ratio estimation. We then demonstrate the
utility of TRE on two high-dimensional complex tasks, providing clear evidence that it substantially
improves on standard single-ratio baselines.

For experiments with continuous random variables, we use the linear combination waymark mecha-
nisms in (5); otherwise, for discrete variables, we use dimension-wise mixing (6). We grid-search over
the number of waymarks m and, for the linear combination mechanism, an extra spacing parameter,
defining the αk in (5). Grid-searches for all hyperparameters are stated in the appendix.

4.1 1d peaked ratio

The basic setup is stated in Figure 1a. For TRE, we use independently parameterised quadratic
bridges log rk(x) = wkx

2 + bk, where this model was chosen to contain the ground-truth solution.

Figure 2 shows the results. The sample efficiency curves clearly demonstrate that, across all sample
sizes, TRE is significantly more accurate than single ratio estimation. In fact, TRE obtains a better
solution with 100 samples than single-ratio estimation does with 100,000 samples: a three orders of
magnitude improvement.

4.2 High-dimensional ratio with large MI
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Figure 3: High-dimensional Gaussian results,
showing estimated MI as a function of the
dimensionality. Errors bars were computed
over 5 random seeds, but are too small to see.

This toy problem has been widely used in the mu-
tual information literature [2, 59]. Let x ∈ R2d be a
Gaussian random variable, with block-diagonal co-
variance matrix, where each block is 2× 2 with 1 on
the diagonal and 0.8 on the off-diagonal. We then es-
timate the ratio between this Gaussian and a standard
normal distribution. This problem can be viewed as
an MI estimation task or an energy-based modelling
task—see the appendix for full details.

We apply TRE using quadratic bridges of the form:
log rk(x) = xTWkx + bk. The results in Figure 3
show that single ratio estimation becomes severely
inaccurate for MI values greater than 20 nats. In
contrast, TRE can accurately estimate MI values as large as 80 nats for 320 dimensional variables. To
our knowledge, TRE is the first discriminative MI estimation method that can scale this gracefully.

4.3 MI estimation & representation learning on SpatialMultiOmniglot

We applied TRE to the SpatialMultiOmniglot problem taken from [55]4 where characters from
Omniglot are spatially stacked in an n× n grid, where each grid position contains characters from
a fixed alphabet. Following [55], the individual pixel values of the characters are not considered
random variables; rather, we treat the grid as a collection of n2 categorical random variables whose
realisations are the characters from the respective alphabet. Pairs of grids, (u,v), are then formed
such that corresponding grid-positions contain alphabetically consecutive characters. Given this
setup, the ground truth MI can be calculated (see appendix).

Each bridge in TRE uses a separable architecture [59] given by log rk(u,v) = g(u)TWkfk(v),
where g and fk are 14-layer convolutional ResNets [24] and fk uses the parameter-sharing scheme

4We mirror their experimental setup as accurately as possible, however we were unable to obtain their code.

6



1 2 3 4 5 6 7 8 9
number of characters

5

10

15

20

25

30

35

m
ut

ua
l i

nf
or

m
at

io
n

1 ratio
TRE
ground truth

1 2 3 4 5 6 7 8 9
number of characters

0.4

0.5

0.6

0.7

0.8

0.9

1.0

m
ea

n 
la

be
l a

cc
ur

ac
y 

(te
st

)

1 ratio
TRE
WPC
CPC

Figure 4: Left: mutual information results. TRE accurately estimates the ground-truth MI even for
large values of ∼ 35 nats. Right: representation learning results. All single density-ratio baselines
(this includes CPC & WPC) degrade significantly in performance as we increase the number of
characters from 4 to 9, dropping by 20-60% in accuracy. In contrast, TRE drops by only ∼ 3%.

described in Section 3.2. We note that separable architectures are standard in the MI-based represen-
tation learning literature [59]. We construct waymarks using the dimension-wise mixing mechanism
(6) with m = n2 (i.e. one dimension is mixed at a time).

After learning, we adopt a standard linear evaluation protocol (see e.g. [54]), where we train supervised
linear classifiers on top of the output layer g(u) to predict the alphabetic position of each character in
u. We compare our results to those reported in [55]. Specifically, we report their baseline method—
contrastive predictive coding (CPC) [54], a state-of-the-art representation learning method based on
single density-ratio estimation—along with their variant, Wasserstein predictive coding (WPC).

Figure 4 shows the results. The left plot shows that only TRE can accurately estimate high MI values
of ∼ 35 nats5. The representation learning results (right) show that all single density-ratio baselines
degrade significantly in performance as we increase the number of characters in a grid (and hence
increase the MI). In contrast, TRE always obtains greater than 97% accuracy.

4.4 Energy-based modelling on MNIST

We use TRE to learn energy-based models of the MNIST handwritten digit dataset [39]. We consider
three choices of the noise distribution: a multivariate Gaussian, a Gaussian copula and a rational-
quadratic neural spline flow (RQ-NSF) [12] with coupling layers [9, 33]. Each distribution is first
fitted to the data via maximum likelihood estimation—see appendix for details.

Each of these noise distributions can be expressed as an invertible transformation of a standard
normal distribution. That is, each random variable has the form F (z), where z ∼ N (0, I). Since F
already encodes useful information about the data distribution, it makes sense to leverage this when
constructing the waymarks in TRE. Specifically, we can generate linear combination waymarks via
(5) in z-space, and then map them back to x-space, giving

xk = F (
√

1− α2
k F

−1(x0) + αkF
−1(xm)). (10)

For a Gaussian, F is linear, and hence (10) is identical to the original waymark mechanism in (5).

We use the parameter sharing scheme from Section 3.2 together with quadratic heads. This gives
log rk(x) = −fk(x)TWkfk(x)− fk(x)Tbk − ck, where we set fk to be an 18-layer convolutional
Resnet and constrain Wk to be positive definite. This constraint enforces an upper limit on the
log-density of the EBM, which has been useful in other work [14, 51], and improves results here.

We evaluate the learned EBMs quantitatively via estimated log-likelihood in Table 1 and qualitatively
via random samples from the model in Figure 5. For both of these evaluations, we employ NUTS
[29] to perform annealed MCMC sampling as explained in the appendix. This annealing procedure
provides two estimators of the log-likelihood: the Annealed Importance Sampling (AIS) estimator
[50] and the more conservative Reverse Annealed Importance Sampling Estimator (RAISE) [3].

5[55] do not provide MI estimates for CPC & WPC, but [59] shows that they are bounded by log batch-size.
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Table 1: Average negative log-likelihood in bits per dimension (bpd, smaller is better). Exact
computation is intractable for EBMs, but we provide 3 estimates: Direct/RAISE/AIS. The ‘Direct’
estimate uses the NCE/TRE approximate normalising constant.

Noise distribution Noise Single ratio (NCE) TRE

Direct RAISE AIS Direct RAISE AIS

Gaussian 2.01 1.96 1.99 2.01 1.39 1.35 1.35
Gaussian Copula 1.40 1.33 1.48 1.45 1.24 1.23 1.22
RQ-NSF 1.12 1.09 1.10 1.10 1.09 1.09 1.09

Gaussian

Copula

RQ-NSF

Noise distribution Single ratio (NCE) TRE

Figure 5: MNIST samples. Each row pertains to a particular noise distribution. The first block shows
exact samples from that distribution. The second & third blocks show MCMC samples from an EBM
learned with NCE & TRE, respectively.

The results in Table 1 and Figure 5 show that single ratio estimation performs poorly in high-
dimensions for simple choices of the noise distribution, and only works well if we use a complex
neural density-estimator (RQ-NSF). This illustrates the density-chasm problem explained in Section
2. In contrast, TRE yields improvements for all choices of the noise, as measured by the approximate
log-likelihood and the visual fidelity of the samples. TRE’s improvement over the Gaussian noise
distribution is particularly large: the bits per dimension (bpd) is around 0.66 lower, corresponding to
an improvement of roughly 360 nats. Moreover, the samples are significantly more coherent, and
appear to be of higher fidelity than the RQ-NSF samples6, despite the fact that TRE (with Gaussian
noise) has a worse log-likelihood. This final point is not contradictory since log-likelihood and
sample quality are known to be only loosely connected [68].

Finally, we analysed the sensitivity of our results to the construction of the waymarks and include the
results in the appendix. Using TRE with a copula noise distribution as an illustrative case, we found
that varying the number of waymarks between 5-30 caused only minor changes in the approximate
log-likelihoods, no greater than 0.03 bpd. We also found that if we omit the z-space waymark
mechanism in (10), and work in x-space, then TRE’s negative log-likelihood increases to 1.33 bpd,
as measured by RAISE. This is still significantly better than single-ratio estimation, but does show
that the quality of the results depends on the exact waymark mechanism.

5 Conclusion
We introduced a new framework—Telescoping density-Ratio Estimation (TRE)—for learning density-
ratios that, unlike existing discriminative methods, can accurately estimate ratios between extremely
different densities in high-dimensions.

TRE admits many exciting directions for future work. Firstly, we would like a deeper theoretical
understanding of why it is so much more sample-efficient than standard density-ratio estimation. The
relationship between TRE and standard methods is structurally similar to the relationship between
annealed importance sampling and standard importance sampling. Thus, exploring this connection
further may be fruitful. Relatedly, we believe that TRE would benefit from further research on
waymark mechanisms. We presented simple mechanisms that have clear utility for both discrete and
continuous-valued data. However, we suspect more sophisticated choices may yield improvements,
especially if one can leverage domain or task-specific assumptions to intelligently decompose the
density-ratio problem. Lastly, whilst this paper has focused on the logistic loss, it would be interesting
to more deeply investigate TRE with other discriminative loss functions.

6We emphasise here that the quality of the RQ-NSF model depends on the exact architecture. A larger model
may yield better samples. Thus, we do not claim that TRE generally yields superior results in any sense.
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Broader Impact

As outlined in the introduction, density-ratio estimation is a foundational tool in machine learning
with diverse applications. Our work, which improves density-ratio estimation, may therefore increase
the scope and power of a wide spectrum of techniques used both in research and real-world settings.
The broad utility of our contribution makes it challenging to concretely assess the societal impact of
the work. However, we do discuss here two applications of density-ratio estimation with obvious
potential for positive & negative impacts on society.

Generative Adversarial Networks [15] are a popular class of models which are often trained via
density-ratio estimation and are able to generate photo-realistic image/video content. To the extent
that TRE can enhance GAN training (a topic we do not treat in this paper), our work could conceivably
lead to enhanced ‘deepfakes’, which can be maliciously used in fake-news or identity fraud.

More positively, density-ratio estimation is being used to correct for dataset bias, including the
presence of skewed demographic factors like race and gender [18]. While we are excited about such
applications, we emphasise that density-ratio based methods are not a panacea; it is entirely possible
for the technique to introduce new biases when correcting for existing ones. Future work should
continue to be mindful of such a possibility, and look for ways to address the issue if it arises.
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A ResNet architectures with parameter sharing
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(a) SpatialMultiOmniglot archi-
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to the width/height of a datapoint,
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nel size is altered. The 2 × 2 pool
layer is only used for ‘down’ blocks.

Figure 6: Convolutional ResNet architectures

In Figure 6, we give the exact architectures for the fk used in the two high-dimensional experiments on
SpatialMultiOmniglot and MNIST. These fk output a hidden vector for the kth bridge, which is then mapped to
the scalar value of the log-ratio, as stated in each experiment section. All convolution operations share their
parameters across the bridges, and are thus independent of k.

The only difference between our conditional residual blocks (i.e. ‘CondResBlocks’) and a standard residual
block is the use of ‘ConditionalScaleShift’ layers. These layers map a hidden vector zk to a hidden vector of the
same size, z′k, via

z′k = sk � zk + bk (11)
where sk and bk are bridge-specific parameters and � denotes element-wise multiplication. This operation
could be thought of as class-conditional Batch Normalisation (BN) [7] without the normalisation. We did not
investigate the use of BN, since many energy-based modelling papers (e.g. [10]) found it to harm performance.
We did perform preliminary experiments with Instance Normalisation [73] in the context of energy-based
modelling, finding it to be harmful to performance.

For the MNIST energy-based modelling experiments, we use average pooling operations since other work
[65, 10] has found this to produce higher quality samples than max pooling. For the SpatialMultiOmniglot
experiments, we grid-search over average pooling and max pooling. For both sets of experiments, we use
LeakyRelu activations with a slope of 0.3.

The MNIST architecture includes an attention block [77] which has been used in GANs to model long-range
dependencies in the input image. We found that this attention layer did not yield improvements in estimated
log-likelihood, but we think it may yield slightly more globally coherent samples. We note that that another
commonly used feature in recent GAN and EBM architectures is Spectral Normalisation (SN) [47]. Our
preliminary experiments suggested that SN was not beneficial for performance. That said, all of our negative
results should be taken with a grain of salt, given the preliminary nature of the experiments.

B Waymark number and spacing

As stated in the main text, the number and (in the case of linear combinations) the spacing of the waymarks are
treated as hyperparameters. Finding good values of these hyperparameters is made simpler by the following
observations.

• If any of the TRE logistic losses saturate close to 0 during learning, then this indicates that the
density-chasm problem has occured for that bridge, and we can terminate the run.
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• As illustrated by our sensitivity analysis for MNIST (see Figure 10) it seems that, past a certain point,
performance plateaus with the addition of extra waymarks. The fact that it plateaus, and does not
decrease, is good news since it indicates that there is little risk of ‘overshooting’, and obtaining a bad
model by having too many waymarks.

We now recall the linear combinations waymark mechanism, given by

xk =
√

1− α2
k x0 + αkxm, k = 0, . . . ,m. (12)

where m is the number of waymarks. We consider two ways of reducing the coefficients αk to a function of a
single spacing hyperparameter p via

αk = (k/m)p, k = 0, . . . ,m, (13)

αk =

{
(k/m)p, for k ≤ m/2
1− ((m− k)/m)p, for k ≥ m/2

}
k = 0, . . . ,m. (14)

Both mechanisms yield linearly spaced αk when p = 1. For the first mechanism in (13), setting p > 1 means
the gaps between waymarks increase with k (and conversely decrease if p < 1). The spacing mechanism in (14)
is a kind of symmetrised version of (13).

Table 2 shows the grid-searches we performed for all experiments. We note that these weren’t always all
performed in parallel. When using linear combinations, we typically set p = 1 initially and searched over values
of m. If, for all values of m tested, one of the TRE logistic losses saturated close to 0, then we would expand
our search space and test different values of p.

C 1d peaked ratio toy experiment

In this experiment we estimate the ratio p0/pm, where both densities are Gaussian, p0 = N (0, σ2
0) and

pm = N (0, σ2
m), where σ0 = 10−6 and σm = 1. We generate waymarks using the linear combinations

mechanism (12), which implies that each waymark distribution is Gaussian, since linear combinations of
Gaussian random variables are also Gaussian. Specifically, the waymark distributions have the form

pk(x) = N (x; 0, σ2
k), where σk =

[
(1− α2

k)σ2
0 + α2

kσ
2
m

] 1
2 . (15)

where the σk form an increasing sequence between σ0 and σm. The log-ratio between two waymark distributions
is therefore given by

log
pk(x)

pk+1(x)
= log

(σk+1

σk

)
+
( 1

2σ2
k+1

− 1

2σ2
k

)
x2. (16)

We parameterise the bridges in TRE as

log rk(x; θk) = log
(σk+1

σk

)
− exp(θk)x2, (17)

where the quadratic coefficient − exp(θk) is always negative. We note that this model is well-specified since it
contains the ground-truth solution in (16).

Table 2: Waymark hyperparameters for each experiment. Curly braces {} denote grid-searches.

experiment mechanism m spacing p

1d peaked ratio linear combo 4 Eq. 13 {1, 2, . . . , 7, 8}
high dim, high MI linear combo d

40 × {1, 2, 3, 4} Eq. 13 1
SpatialMultiOmniGlot dim-wise mix d N/A N/A
MNIST (z-space) linear combo {5, 10, 15, 20, 25, 30} Eq. 13 1
MNIST (x-space) linear combo {5, 10, 15, 20, 25, 30} Eq. { 13, 14 } {1, 1.5, 2}

Note: d refers to the dimensionality of the dataset, which is varied for certain experiments.
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The bridges can then be combined via summation to provide an estimate of the original log-ratio

log
p0(x)

pm(x)
≈
m−1∑
k=0

log rk(x; θk) (18)

= log
(σm
σ0

)
−
m−1∑
k=0

exp(θk)x2 (19)

= log
(σm
σ0

)
− exp(θTRE)x2 (20)

Where θTRE = log(
∑m−1
k=0 exp(θk)). We observe that (20) has the same form as (17) if we were to set m = 1

in (17) (i.e. if we use a single bridge). Hence θTRE can be directly compared to the parameter value we would
obtain if we used single density-ratio estimation. This is precisely the comparison we make in Figure 1a and
Figure 2 of the main text.

C.1 The density chasm problem for non-logistic loss functions

In the main paper, we illustrated the density-chasm problem for the logistic loss using the 1d peaked ratio
experiment. Here, we illustrate precisely the same phenomenon for the NWJ/MINE-f loss [52, 2] and a Least
Squares (LSQ) loss used by [43]. The loss functions are given by

LNWJ(θ) = −Ep
[
log r(x;θ)

]
− 1 + Eq

[
r(x;θ)

]
(21)

LLSQ(θ) =
1

2
Ep
[
(σ(log(r(x;θ)))− 1)2

]
+

1

2
Eq
[
(σ(log(r(x;θ))))2

]
, (22)

where the σ in (22) denotes the sigmoid function.

In Figures 7 & 8, we can see how single-density ratio estimation performs when using the NWJ and LSQ loss
functions for 10,000 samples. the loss curves display the same ‘saturation’ effect seen for the logistic loss, where
many settings of the parameter yield an almost identical value of the loss. Moreover, the minimiser of these
saturated objectives is far from the ‘true’ minimiser (black dotted lines).

Figures 7 & 8 also show the performance of TRE when each bridge is estimated using the NWJ/LSQ losses.
Each TRE loss has a quadratic bowl shape, where the finite-sample minimisers almost perfectly overlap with the
true minimisers.

Finally, we plot sample efficiency curves for both the NWJ and LSQ losses, showing the results in Figure 9.
We see that single density-ratio estimation with NWJ or LSQ performs poorly, with at best linear gains for
exponential increases in sample size. In contrast, if we perform TRE using NWJ or LSQ losses, then we obtain
significantly better performance with orders of magnitude fewer samples. These findings are essentially the
same as those presented in the main paper for the logistic loss.

D High-dimensional ratio with large MI toy experiment

In this experiment we estimate the ratio p0/pm, where both densities are Gaussian, p0 = N (0,Σ) and
pm = N (0, I), where Σ is a block-diagonal covariance matrix, where each block is 2× 2 with 1 on the diagonal
and 0.8 on the off-diagonal. Since we know its analytic form, we can view pm as a noise distribution, and
the ratio-estimation task as an energy-based modelling problem. Alternatively, we may view the problem as a
mutual information estimation task, by taking the random variable x = (x1, . . . , xd) ∼ p0, and defining u =
(x1, x3, . . . , xd−1) and v = (x2, x4 . . . xd). By construction, we therefore have p(u)p(v) = N (x; 0, I) =
pm(x).

We generate 100, 000 samples for each of the train/validation/test splits. We use a total batch size of 1024,
which includes all samples from the waymark trajectories. The bridges in TRE have the form log rk(x) =
xTWkx + bk, where we enforce that the diagonal entries of Wk are positive and that the matrix is symmetric.
We use the Adam optimiser [32] with an initial learning rate of 0.0001 for TRE, and 0.0005 for single ratio
estimation. We use the default Tensorflow settings for β1, β2 and ε. We train the models for 40, 000 iterations,
which takes at most 1 hour.

E MI estimation & representation learning on SpatialMultiOmniglot

We here describe how we created the SpatialMultiOmniglot dataset and give the derivation for the ground truth
mutual information values presented in the main paper7. We will share the dataset, along with code for the paper,
upon publication. We also state the hyperparameter settings used in our experiments.

7The original work from which we borrow this experiment [55] did not not provide a detailed explanation or
code.
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Figure 7: Replica of Figure 1 from the main text, except that we use the NWJ/MINE-f loss [52, 2] for
both the single ratio estimator & for each ratio in TRE.

Least-square loss
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Figure 8: Replica of Figure 1 from the main text, except that we use the least-square loss from the
GAN literature [43] for both the single ratio estimator & for each ratio in TRE.
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Figure 9: Sample efficiency curves for the 1d peaked ratio experiment, using different loss functions.

E.1 Dataset construction

We take the Tensorflow version of the Omniglot dataset (https://www.tensorflow.org/datasets/catalog/omniglot)
and resize it to 28 × 28 using the tf.image.resize function. We arrange the data into alphabets {Ai}li=1,
where each alphabet contains ni characters. The alphabets are sorted by size, so that n1 > n2 > . . . > nl.
Each character in a alphabet has 20 different versions (e.g. there are 20 different images depicting the letter ‘w’).
Hence, we can express each alphabet as a set Ai = {{aij,k}20k=1}

ni
j=1, where aij,k refers to the kth version of the

j th character of the ith alphabet.

In order to construct the d-dimensional version of the SpatialMultiOmniGlot dataset, we restrict ourselves to the
d largest alphabets {Ai}di=1. We then sample a vector of categorical random variables

j = (j1, . . . , jd) ∼ Cat(n1)× . . .Cat(nd) (23)

where the ith categorical distribution is uniform over the set {1, . . . , ni} and is independent from the other
categorical distributions. The vector j should be thought of as an index vector that specifies a particular character
from each of the d alphabets.

We then sample two i.i.d random variables k and k′, via

k = (k1, . . . , kd) ∼
d∏
i=1

Cat(20) k′ = (k′1, . . . , k
′
d) ∼

d∏
i=1

Cat(20) (24)

where, again, each Categorical distribution is independent from the rest. These vectors should be thought of as
index vectors that specify a particular version of a character.

Now, we define a datapoint as a tuple x = (u,v), where

u = (a1j1,k1 , . . . , a
d
jd,kd) v = (a1j1+1,k′1

, . . . adjd+1,k′
d
). (25)

In words, we construct u and v such that ui and vi are consecutive characters within their alphabet (whilst the
precise versions of the characters are randomised). Finally, we arrange u and v into a grid using raster ordering.
This is possible since we assume d to be a square number.

Importantly, we emphasise that u,v ∈
∏d
i=1Ai are discrete random variables defined over a set of template

images. They are not defined over a space of pixel values, as is usually the case in image-modelling.

E.2 Derivation of ground truth MI

By construction, we have that u and v are conditionally independent given j. This means

p(u| v, j) = p(u| j). (26)

Furthermore, will assume that, for all u there exists a unique ju such that

p(ju| u) = 1. (27)

17



Similarly, for any v, there exists a unique jv satisfying the same condition. In words, this simply means that,
given a grid of Omniglot images, we assume there is no ambiguity about which characters are present. Using
Bayes’ rule, and the fact that for a given j, u is uniquely determined by k, one can then deduce that

p(u| j) =

{
0, for j 6= ju
20−d, for j = ju

}
. (28)

and similarly for v.

We now proceed to derive an analytical formula for the ground truth mutual information between u and v. We
show that the mutual information is equal to the sum of the log alphabet sizes I(u,v) =

∑d
i=1 logni.

This holds because

I(u,v) = Ep(u,v) log
p(u,v)

p(u)p(v)
(29)

= Ep(u,v) log
p(u| v)

p(u)
(30)

= Ep(u,v) log

∑
j p(u, j| v)∑
j p(u, j)

(31)

= Ep(u,v) log

∑
j p(u| j)p(j| v)∑
j p(u| j)p(j)

by (26) (32)

= Ep(u,v) log
p(u| jv)∑
j p(u| j)p(j)

by (27) (33)

= Ep(u,v) log
p(u| jv)

p(u| ju)p(ju)
by (28) (34)

= Ep(u,v) log
1

p(ju)
since jv = ju if p(u,v) > 0 (35)

= Ep(u,v) log
( d∏
i=1

ni
)

since p(j) is uniform (36)

=

d∑
i=1

logni (37)

E.3 Experimental settings

We generate 3 versions of the SpatialMultiOmniglot dataset for d = 1, 4, 9. For each version, we sample 50, 000
training points and 10, 000 validation and test points. As stated in the main text, we use a separable architecture
given by

log rk(u,v) = g(u)TWkfk(v), (38)

where fk is a convolutional ResNet whose architecture is given in Figure 6a. The function g is also a convolutional
ResNet with almost the same architecture, except that none of its parameters are bridge-specific, and hence the
‘ConditionalScaleShift’ layers simply become ‘ScaleShift’ layers, with no dependence on k.

To construct a mini-batch, we first sample a batch from the joint distribution p(u,v). We then obtain samples
from p(u)p(v) by sampling a second batch from the joint distribution (which could overlap with the first batch),
and shuffling the v vectors across this second batch. Finally, we construct waymark trajectories as described in
the main text. For all experiments, the ‘total’ batch size is ∼ 512, which includes all samples from the waymark
trajectories. Thus, as the number of waymarks increases, the number of trajectories in a batch decreases.

We use the Adam optimiser [32] with an initial learning rate of 10−4 with default Tensorflow settings for β1, β2
and ε. We gradually decrease the learning rate over the course of training with cosine annealing [42]. All models
are trained using a single NVIDIA Tesla P100 GPU card for 200, 000 iterations, which takes at most a day.

We grid-searched over the type of pooling (max vs. average) and the size of the final dense layer (150n, 300n
and 450n, where d = n2). Interestingly, average pooling was less prone to overfitting and often yielded better
final performance, however it was often ‘slow to get started’, with the TRE losses hardly making any progress
during the first quarter of training.

For the representation learning evaluations, we first obtained the hidden representations g(u) for the entire dataset.
We then trained a collection of independent supervised linear classifiers on top of these representations, in order
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to predict the alphabetic position of each character in u. We used the L-BFGS optimiser to fit these classifiers
via the tfp.optimizer.lbfgs_minimize function, setting the maximum iteration number to 10, 000.

F Energy-based modelling on MNIST

We here discuss the parameterisation of the noise distributions used in the experiments, the exact method for
sampling from the learned EBMs, and the experimental settings used for TRE.

For all noise distributions and TRE models, we use the Adam optimiser [32] with an initial learning rate of 10−4

with default Tensorflow settings for β1, β2 and ε. We gradually decrease the learning rate over the course of
training with cosine annealing [42]. All models are trained using a single NVIDIA Tesla P100 GPU card.

F.1 Noise distributions

As stated in the main text, we consider three noise distributions: a multivariate Gaussian, a Gaussian copula
and a rational-quadratic neural spline flow (RQ-NSF), all of which are pre-trained via maximum likelihood
estimation.

The full-covariance multivariate Gaussian is by far the simplest, and can be fitted in around a minute
via np.cov. The Gaussian copula is slightly more complicated. Its density can be written as p(x) =

N ([s1(x1), . . . , sd(xd)];µ,Σ)
∏d
i=1 |s

′
i(xi)|. The si are given by the composition of the inverse CDF of

a standard normal and the CDF of the univariate xi. It is possible to exploit this to learn the si—as well as
µ and Σ—however, we found it slightly simpler to directly parametrise the si via flexible rational-quadratic
spline functions [12] of which there are official implementations in Tensorflow and Pytorch and to jointly learn
all parameters via maximum likelihood. We follow the basic hyperparameter recommendations in [12]. The
hyperparameters that required tuning were the number of bins (we use 128) and the interval widths (which we
set to 3 times the standard deviation of the data). For optimisation, we used a batch size of 512 and trained for
40, 000 iterations.

Finally, we turn to the RQ-NSF model [12]. We largely adopt the architectural choices of [12], and so for a
more detailed explanation, we refer the reader to their work. We use a multi-scale convolutional architecture
comprised of 2 levels, where each level contains 8 ‘steps’. A step consists of an actnorm layer, an invertible
1× 1 convolution, and a rational-quadratic coupling transform. The coupling transforms are parameterised by a
block of convolution operations following [37], which use 64 feature maps. The spline functions use 8 bins and
the interval width is set to [-3, 3]. We do not ‘factor out’ half of the variables at the end of each level, but do
perform ‘squeeze’ operation and an additional 1× 1 convolution. For optimisation, we set the batch size to 256,
the dropout rate to 0.1, and train for 200, 000 iterations, which takes under a day.

F.2 Annealed MCMC Sampling

We here describe how we leverage the specific products-of-experts structure of the TRE model to perform
annealed MCMC sampling. Firstly, we initialise a set of MCMC chains with i.i.d samples from the noise
distribution pm. We could then run an MCMC sampler with the full TRE model as the target distribution.
However, we instead use an annealing procedure, whereby we iteratively sample from a sequence of distributions
that interpolate between pm and p0. Such distributions can be obtained by multiplying pm with an increasing
number of bridges

pk(x) = pm(x)

m−1∏
i=k

rk(x), k = m− 1, . . . 0. (39)

To obtain an even smoother interpolation, we further define exponentially-averaged intermediate distributions
pk,t(x) = pk(x)βtpk+1(x)1−βt , where {βt} is a decreasing sequence of numbers ranging from 1 to 0.

In addition to obtaining samples, we can simultaneously use this annealing procedure for estimating the log-
likelihood of the model via annealed importance sampling (AIS) [50]. We may also run the annealing procedure
‘in reverse’, initialising a chain at a datapoint and iteratively removing bridges until the target distribution of the
MCMC sampler is the noise distribution. Using this reverse sampling procedure, we can obtain a second, more
conservative, estimate of the log-likelihood via the reverse annealed importance sampling estimator (RAISE) [3].

Whilst in principle any MCMC sampler could be used, the efficiency of different samplers can vary greatly. We
choose to use the gradient-based No-U-turn sampler (NUTS) [29], which is a highly efficient method for many
applications. We use the official Tensorflow implementation along with most of the default hyperparameter
settings. We set the target acceptance rate to 0.6, and use a max tree depth of 6 during the annealed sampling.
We also continue to run the sampler after the annealing phase is finished, using a max tree depth of 10. We use a
total of 1000 intermediate distributions with 100 parallel chains.
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Finally, recall from the main text that each noise distribution in our experiments can be expressed as invertible
transformation F of a standard normal distribution. We use this F to further enhance the efficiency of the NUTS
sampler, by performing the sampling in the z-space, and then mapping the final results back to x-space. Working
in z-space, by the rules of transformations of random variables, the intermediate distributions of (39) become

pk(z) = N (z; 0, I)
m−1∏
i=k

rk(F (z)). (40)

AIS and RAISE can still be applied, just as before, to obtain an estimate of the log-likelihood in z-space.
The change of variables formula for probability density functions can then be applied to obtain estimated
log-likelihoods for the original TRE model in x-space. We note that when the noise distribution is a normalising
flow, prior work has demonstrated that z-space MCMC sampling can be significantly more effective than working
in the original data space [28].

F.3 Experimental settings

We use the standard version of the MNIST dataset [39], with 50, 000 training points, and 10, 000 validation
and test points. We follow the same preprocessing steps as [56], ‘dequantizing’ the dataset with uniform noise,
re-scaling to the unit interval, and then mapping to the real line via a logit transformation.

The architecture for the TRE bridges is given in Figure 6b. The waymark mechanism and associated grid-search
is given in Table 2. A consistent observation across all our MNIST experiments was that the first ratio-estimator
between the data distribution p0 and a slightly perturbed data distribution p1 was extremely prone to overfitting.
We found that the only way to mitigate this problem was to simply drop the ratio by setting the α0 in (12) to a
very small value (0.01) rather than exactly 0. Equivalently, this can be viewed as applying standard TRE to a
very slightly perturbed data distribution. We note that this perturbation is small enough that is barely visible
to the human eye when comparing samples. We conjecture that this problem may stem from the fact that the
original MNIST dataset is actually discrete not continuous and the ‘dequantizing’ perturbation used to make the
data continuous is perhaps not sufficient.

To form mini-batches, we sample 25 datapoints each from p0 and pm, and then generate waymark trajectories as
described in the main text. Thus, the total batch size is 25× (m+ 1). We use the optimisation settings described
at the beginning of this section, training for 200, 000 iterations, which takes about a day.

F.4 Additional results

In Figure 10, we present a sensitivity analysis showing how the quality of the learned EBM varies as we alter
the number of waymarks, as well as the space in which the waymarks are generated. We found that working
in x-space yielded lower performance compared to working in z-space, as measured by the most conservative
estimator, RAISE. In particular, we found that the x-space mechanism required more waymarks (around 15) to
avoid any of the logistic losses saturating close to 0, and it was significantly harder to tune the spacing of the
waymarks as indicated by Table 2.

Finally, for the models whose results were given in the main paper, we display extended image samples in Figure
11. Note that these samples are ordered by log-density (lowest density in top left corner, highest in bottom right).
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Figure 10: Waymark sensitivity analysis for TRE with copula noise distribution. Both plots show
the estimated bits per dimension (bpd) as a function of waymark number. On the left we apply the
linear combination waymark mechanism in z-space, whilst on the right we apply it in x-space. As
described in Section B, we terminate runs where any of the TRE losses saturate close to 0, which is
exactly what happened when using the x-space mechanism for 5 and 10 waymarks.
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(a) Samples from TRE model with Gaussian noise distribution, ordered by log-density.

(b) Samples from TRE model with copula noise distribution, ordered by log-density.

(c) Samples from TRE model with RQ-NSF noise distribution, ordered by log-density.

Figure 11: Extended MNIST samples
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